The Role of Brazed Aluminium Heat Exchangers in Mid-Scale LNG Liquefaction

Gastech 2011

Oliver Knight
Chart Energy & Chemicals, Inc.
Disclaimer

This presentation includes forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. The use of words such as “may”, “might”, “should”, “will”, “expect”, “plan”, “anticipate”, “believe”, “estimate”, “project”, “forecast”, “outlook”, “intend”, “future”, “potential” or “continue”, and other similar expressions are intended to identify forward-looking statements. All of these forward-looking statements are based on estimates and assumptions by our management as of the date of this presentation that, although we believe to be reasonable, are inherently uncertain. Forward-looking statements involve risks and uncertainties that could cause actual results, economic or social conditions or circumstances to differ materially from those expressed or implied by forward-looking statements. These risks and uncertainties include, among others, the cyclical nature of energy markets and the vulnerability of those markets to economic downturns; the negative impacts of the recent global economic and financial crisis; fluctuations in energy prices; changes in government energy policy; competition; general economic, political, business and market risks associated with international transactions and operations; fluctuations in foreign currency exchange and interest rates; changes in capital markets; the pricing and availability of raw materials; the costs of compliance with environmental, health and safety laws, and potential liabilities under these laws; the impact of hurricanes and other severe weather; and litigation and disputes. For a discussion of these and additional risks that could cause actual results to differ from those described in the forward-looking statements, see disclosure under Item 1A. “Risk Factors” in Chart’s most recent Annual Report on Form 10-K and other recent filings with the Securities and Exchange Commission, which should be reviewed carefully. Please consider Chart’s forward-looking statements in light of these risks. Any forward-looking statement speaks only as of its date. Chart undertakes no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

Copyright

Copyright of all published material including photographs, drawings and images in this document remains vested in Chart and third party contributors as appropriate. Accordingly, neither the whole nor any part of this document shall be reproduced in any form nor used in any manner without express prior permission and applicable acknowledgements. No trademark, copyright or other notice shall be altered or removed from any reproduction.
Contents

Product & Market Evolution

What is a Brazed Aluminium Heat Exchanger (BAHX)?

What is Mid-Scale LNG?

Typical Applications of BAHX in Mid-Scale LNG Technology

2Φ Distribution / Transient Analysis

Summary and Questions
Product & Market Evolution

1950
2000
2030
Brazed Aluminium Plate & Fin Heat Exchangers (BAHX)

\[Q = U \cdot A \cdot \Delta T_{LMTD} \]
BAHX Fabrication
Fin Types

Plain
- Low heat transfer
- Low pressure drop

Perforated
- Medium heat transfer
- Medium pressure drop

Serrated
- High heat transfer
- High pressure drop

Herringbone
- High heat transfer
- High pressure drop

Other fin variables -> height, density, thickness, perforation ...
Braze Joint
Two or three core blocks can be welded together.
Features & Benefits

Versatile
- 2 - 20 streams
- -269°C / +204°C design
- 0 - 160 bar

Surface area-to-volume
>1000 m²/m³
- Compact
- 1°C approach
- Thermal margin
Range of Application

Industrial Gases

Natural Gas Processing

Petrochemical

Industrial Refrigeration

BAHX
Range of Application

Industrial Gases

LNG

BAHX

Petrochemical

Industrial Refrigeration
Energy Consumption and Fuel Mix

Identified Gas Fields

Source: Zeus
Growth of Unconventional Gas

Worldwide Gas Production Forecast (BCM)

Unconventional Gas Production Forecast (TCF)

Gas Production, billion cubic metres

Gas Production Capacity, billion cubic metres

Conventional | Unconventional

North America | Rest of World
Definition of Mid-Scale LNG

<table>
<thead>
<tr>
<th>Production Requirement</th>
<th>TPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fueling Station</td>
<td>< 30</td>
</tr>
<tr>
<td>Peak Shaving</td>
<td>50 - 200</td>
</tr>
<tr>
<td>Small-Scale</td>
<td>30 - 500</td>
</tr>
<tr>
<td>Mid-Scale</td>
<td>500 - 2850</td>
</tr>
<tr>
<td>Baseload</td>
<td>> 7,500</td>
</tr>
</tbody>
</table>
Fit of Mid-Scale LNG

Source: Zeus
Shorter Project Execution

TYPICAL 5.0 MTPA LNG PLANT

Multi FEED proposals > Contract Selection & Award

Pre- FEED ➔ FEED & Prep of EPC ITB ➔ EPC Bid Prep ➔ EPC Award ➔ EPC Execution

6 ➔ 5 ➔ 10 ➔ 6 ➔ 3 ➔ 42

72 months including Pre-FEED

TYPICAL MID-SCALE 0.5 MTPA LNG PLANT

Equipment award

Study ➔ EPF Execution ➔ Ship, install, test

5 ➔ 18 ➔ 9

32 months

Source: Adapted model courtesy of Siemens
LNG Technology
Process Selection Criteria

- **Nitrogen Cycle**
 - Lower efficiency & cost
 - Small to Mid-Scale

- **Single Mixed Refrigerant**
 - Medium efficiency & cost
 - Mid-Scale

- **Cascade, C3/MR**
 - Higher efficiency & cost
 - Baseload
BAHX Enabled Features

- Flexible
- Robust
- Optimised
- Module
- Cost Effective
- Efficient

Scale-adapted, standardized, modularized, expandable and efficient
BAHX Enabled Features

- Robust
- Flexible
- Optimised
- Module
- Cost Effective
- Efficient

Scale-adapted, standardized, modularized, expandable and efficient
BAHX Enabled Features

- Robust
- Flexible
- Optimised
- Module
- Cost Effective
- Efficient

Scale-adapted, standardized, modularized, expandable and efficient
BAHX
Enabled Features

- Robust
- Flexible
- Optimised
- Module
- Cost Effective
- Efficient

Scale-adapted, standardized, modularized, expandable and efficient
BAHX Enabled Features

- Flexible
- Robust
- Optimised
- Module
- Cost Effective
- Efficient

Scale-adapted, standardized, modularized, expandable and efficient
LIQUEFIER
Mid-Scale LNG Cold Box
Mid-Scale LNG Cold Box
Natural Gas Liquids (NGL)

✓ To prevent freezing
✓ To meet LNG specification
✓ To produce NGL product
BAHX Layer Types

- Hot or Cold
- Inlet distributor
- Heat transfer fin
- Outlet distributor
Stacking Arrangement

1 : 1 (Hot : Cold)

1 : 2 (Hot : Cold)

The stacking arrangement is crucial to optimising heat transfer. A repeating pitch of layers is usually best.
Visual Representation
PRE-COOLING
Core-in-Kettle™

- Kettle up to 55 bar
- Core up to 160 bar
- Temperatures between -269°C and + 204°C
CIK™ technology enables approach temperatures to be reduced from 7°C to 1°C resulting in a 15% saving on compression energy requirement.

7460kW (10,000 HP) requirement

Save 15% on compressor cost @ $800/kW = $900,000

Save 15% on operating expense @ $0.06kWh⁻¹ = $600,000 / year
CIK Engineering

Kettle up to 55 bar

Core up to 160 bar

Temperature range: -269°C/+204°C
Other Applications

- Carbon Capturing
- Helium recovery
- Boil Off Gas
Boil Off Gas Re-Liquefaction
2Φ Inlet Distribution

Vapour

Liquid

2Φ
Transient Conditions

✧ Stream-to-stream temperature difference should be below 30°C at any given location

✧ Rate-of-change-of-temperature should be kept at 2°C per minute

✧ Outside of these rules we can evaluate in more detail using:

✓ Numerical Analysis (CFD/FEA)
✓ Aspentech LNG Dynamic Analysis
✓ Bulk Analysis
BAHX are Proven, Efficient, Compact, and Cost Effective Mission Critical Heat Exchangers for LNG!

Thank you!

oliver.knight@chart-ind.com
+44 7946 664453
http://www.chart-ind.com

Come and talk with us at stand D080!